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Abstract 

Accurate measurement of angular motion of spinning bodies with on- 
board sensors has long been recognized as a daunting task. Recent 
advances in magnetic sensor technologies have yielded devices small 
enough, rugged enough, and sensitive enough to be useful in systems 
that make high-speed, high-resolution measurements of attitude 
relative to magnetic fields when these sensors are installed on free- 
flying bodies. 

Such a measurement system, called a “MAGSONDE” (MAGnetic 
SONDE), has been designed for use in spinning projectiles for the 
estimation of in-flight angular orientation with respect to the earth’s 
magnetic field. The MAGSONDE is comprised of both an apparatus 
and a methodology that determine orientation from sensor phase 
measurements. Sensor scale factor variations will not affect 
MAGSONDE performance. Other significant features of the 
MAGSONDE are its day/night and all-weather capability and its use 
of non-emissive, passive sensors. Potential applications for 
MAGSONDE include (but are not limited to) navigational aids and 
determination of angular motion histories of experimental, 
developmental, and tactical projectiles. 
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MAGSONDE? A DEVICE FOR MAKING ANGULAR MEASUREMENTS 
ON SPINNING PROJECTILES VIA MAGNETIC SENSORS 

1. Introduction 

Recent advances in magnetic sensor technologies have resulted in devices small 
enough, rugged enough, and sensitive enough to be useful in systems capable of 
making high-speed, high-resolution measurements of attitude relative to 
magnetic fields when these sensors are installed on free-flying bodies. This 
report provides the analytical support for such a measurement system, called a 
“MAGSONDE” (MAGnetic SONDE), which employs fixed magnetic sensor(s) on 
a rotating body for the estimation of that body’s orientation with respect to a 
stationary magnetic field. An application of particular interest to the Army is 
measurement of in-flight angular orientation of spinning projectiles with respect 
to the earth’s magnetic field. 

Although devices responsive to the earth’s magnetic field have long been used 
for heading estimation, MAGSONDE is a new and unique technology. It differs 
from all other known systems that give orientations with respect to a magnetic 
field in that those systems use one or more of four basic measurement types to 
determine orientations: 1) field strength along a sensor axis, 2) relative field 
strength along multiple sensor axes, 3) rate of change of field strength along a 
sensor axis, and 4) relative rates of change along multiple sensor axes. In every 
case, the measurements are premised on some evaluation of a component of the 
magnetic field along a sensor axis and require prior knowledge of the field 
and/or accurate sensitivity calibration. Making angular measurements with 
MAGSONDE only requires the magnetic sensor(s) to identify the times when 
there is no magnetic field along the sensor axis. In this case, the measurements 
are premised on the absence of a magnetic field component along a sensor axis. 
MAGSONDE determines orientation from relative phase information in the 
sensor output at zero crossings and is therefore independent of amplitude. This 
feature is important for several reasons: 1) No knowledge of the field strength is 
required, 2) manufacturing tolerances that affect sensitivity have no impact on 
orientation determination, and 3) only scalar arithmetical operations are required 
for the angular measurements. 

Potential applications for MAGSONDEs include (but are not limited to) 
navigational aids and determination of angular motion histories of experimental, 
developmental, and tactical projectiles. The processed sensor data can be used as 
a diagnostic tool for aerodynamic performance, projectile-payload interactions, 
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projectile-weapon interactions, determination of maneuver authority for guided 
munitions, and as a navigational aid for “jammed” global positioning system 
(GPS)-fitted munitions. The sensor data can also provide a relative roll 
orientation and roll rate reference for calibrating ancillary data sources such as 
accelerometers and angular rate sensors. 

A SOLARSONDE, commonly called “yawsonde,” is a similar sensor-based 
angular measurement capability that uses sunlight as a reference field. It is 
widely used in many projectile study programs for in-flight measurements of the 
solar aspect angle, which is defined as the angle between a spinning projectile’s 
axis of rotation and a vector from the center of gravity (CG) to the sun. 
MAGSONDE systems are in many ways analogous to SOLARSONDE. However, 
there are four important distinctions: outer surface access, launch window, bias 
sensitivity, and frequency response. The main disadvantages of a SOLARSONDE 
are the requirement for access to the exterior surface of a rotating body and the 
dependence on an unobscured solar line of sight. Given that an observable 
measurement is possible, the internally mounted magnetic sensors of a 
MAGSONDE have the advantage of an unchanging magnetic launch window 
suitable for day/night and all-weather conditions. For some projectile 
orientations, the converse argument for the SOLARSONDE is that as time passes, 
the daily variation in the solar vector will always ensure an observable solar 
angle measurement, while the unchanging magnetic field may not ever yield a 
measurement. The current SOLARSONDE has no bias or frequency response 
susceptibility, either of which can drastically change the derived angular 
measurement from a MAGSONDE. Thus, the MAGSONDE has a stringent 
signal-conditioning and instrumentation calibration requirement. 

A complete MAGSONDE system includes the sensor design and qualification, a 
multiple sensor application, calibration, launch window simulation, successful 
acquisition of flight data, and data processing. Each of these aspects is discussed 
in sequence. 

2. Sensor Design and Qualification 

A fundamental MAGS6NDE requirement is that projectile spin rotates the 
sensor(s) in a stationary magnetic field. The sensor(s) must have a nearly flat 
frequency response with minimal phase shift over a frequency range to at least 
two times the roll rate of the body to which it is fitted. A magnetometer suitable 
for a MAGSONDE must also have a direct current (DC) response characteristic to 
the magnetic field. For the epicyclic motion typical of spinning projectiles, the 
processing of the sensor data for MAGSONDE is straightforward when the spin 
rates are much greater than the precession and nutation rates. When this 

2 



condition is not met, more advanced processing algorithms are employed with 
comparable results. 

The MAGSONDE system makes only a single demand of its magnetic sensors, 
namely, the identification of zero output. Thus, material sensitivity variations, 
field strength variations, and attenuating flight body materials will have no effect 
on MAGSONDE performance. Given existing materials responsive to the desired 
range of magnetic field strength, a sensing device with a favorable signal-to- 
noise ratio is readily achievable. However, units with built-in electronics must 
provide both a stable scale factor (gain) and bias (offset) characteristics. 

Finally, for military applications, the sensor must be small and rugged and must 
consume very little power. Devices of this nature are currently being developed 
by the Defense Advanced Research Program Agency (DARPA). Investigation of 
their applicability 
~j2q3erimentation,- abl 

o MAGSONDE is a main consideration for the development, 
d final vendor selection for particular military applications. 

While the sensor selection is significant, a listing and evaluation of candidate 
devices is beyond the scope of this report and would needlessly date the 
otherwise time-independent content. 

Within a magnetic field, the flux line through any point can be described by a 
vector, M, resolvable into orthogonal components. Without the loss of 
generality, a system (I, J, K) can be defined so that M is in the I-K plane (see 
Figure 1). The angle between M and the +I axis is designated as GM. The 
components of 6l in the I, J, K system are then given by 

M, =0 

M, = lMisin(crM) 

(1) 

Figure 1. Magnetic Field Through a Point. 
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The derivation of magnetic attitude is accomplished in MAGSONDE by the 
evaluation of the output from a pair of rotating sensors crossing the magnetic 
field. Consider a spinning projectile with its CG at the origin of the I, J, K system, 
its axis of rotation on the I axis, and its nose pointed in the +I direction (see 
Figure 2). On board this projectile is a magnetic sensor (S) situated so that its 
sensitive axis is coplanar with the projectile’s spin axis and oriented at a non-zero 
angle h (called the tilt angle) from the spin axis. If the projectile roll angle (9s) is 
indexed so that the sensor axis lies in the half-plane containing the +J axis and 
the I axis when the roll angle is zero, the field strength along the sensor axis at 
any instant is given by 

M, = cos(h) M, +sin(h) M K sin(qs ) 

= cos(h))MI cos(oM )+ sin(h)lti/ sin(o, )sin($,) (4 

+J 

Figure 2. Geometry of Projectile-Borne Magnetic Sensors. 

The field strength along a sensor axis, when described with respect to the body- 
fixed system, has two basic types of contributing terms: an axial (bias) 
component, cos(h))&k) COS(O, ), d an a ra la d’ I( usually roll-modulated) component, 

sin(h)ltil sin(cr,)sln(i,). 

When h = 90, there is no axial component and Equation 2 simplifies to 

M, =(M( sin(o, (3) 

Whenever the sensor axis is orthogonal to the field, M, = 0. Two possibilities 
exist; either sin(o, ) = 0 or sin(&) = 0. In the first case, Ok = 0” or 03, = 180”, 
the axis of rotation is parallel to the magnetic field, and the field strength is 
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invariant throughout a roll cycle. In the latter case, sin(o, ) f 0, the variation of 
field strength along the sensor axis is sinusoidal, and M, = 0 when & = 0” and 
180”. 

When h # 90”, solving Equation 2 for the roll angles at whichM, = 0 yields 

sin (es ) = 
-cos((T,)COS(h) 

sin (0, )sin (h) I 
(4 

The existence criterion for & to be a real number of 

- cos(0,) cos(h) < 1 

sin(o,) sin(h) - 

leads to the requirement that 90-h I o M I 90+ h for the occurrence of an 
orthogonal condition. This is discussed further in Section 5. 

3. A Multiple Sensor Application 

Although MAGSONDE style measurements can be made with a single sensor, a 
two-sensor application is better suited for projectiles that are possibly 
undergoing complex in-flight kinematics. In Figure 3, two sensors are installed in 
an artillery fuze body so that 
fuze are co-planar. The sensor 

their sensitive axes and the axis of rotation of the 
tilt angles (Is) are 90” and 60”, respectively. 

-  

Axis of Rotation 

1 -1------------. 

Figure 3. A Fuze-configured MAGSONDE With Two Sensors. 

Figure 4 shows the normalized field strength along the sensitive axis for these 
sensors throughout several roll cycles when the angle between the axis of 
rotation and the magnetic field (0~) is 45”. The critical observation to be made 
about these curves is that the roll angles at which each of the sensors is 
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orthogonal to the field, i.e., the zero crossings, are irregularly spaced throughout 
a roll cycle for X2 = 60”. 

- Sensor Output for h = 60’ 
- Sensor Output for h = 90’ 

0 90 180 270 360 450 540 630 720 
Magnetic Roll Angle (qs - deg) 

Figure 4. Normalized Magnetic Field Strength Along Sensor Axes. 

It was seen in Equations 3 and 4 that, given any fixed tilt angle ( h ), the roll angle 
at orthogonality ($.) is a function of (JM. This relationship is plotted in Figure 5 
for two sensors with tilt angles of 90” and 60”, as in Figure 3. As previously 
noted, the zero crossings for a radially oriented sensor, (h = 90 “), are at roll 
angles of 0” and 180” for all 0, f 0” or 180”. If CJ, = 0” or 180”, the projectile 
spin axis is parallel to the magnetic field, and a radially oriented sensor would be 
orthogonal to the field at all roll angles. For the 60” tilted sensor, the zero 
crossings are also at roll angles of 0” and 180” for ‘J, = 90”. For other values of 
GM, a phase shift of the zero crossings results, the magnitude of which varies 
directly with ICY~ - 901. 

Denoting the two sensors as Sl(90”) and S2 (60”) and the two pairs of roll angles 
at the zero crossings for these sensors as ( qs,, , Qs,, ) and ( Qs,, , $s,, ), the ratio 

is formed (see Figure 6). Also included are similar ratios for sensors, $12, with tilt 
angles of 45” and 75”. The ambiguity arising from the symmetry of this ratio 
about CJ~ = 90” is easily resolved by checking the parity of the field along S1 
when SP is orthogonal to the field. Thus, the combination of the ratio, @, and a 
parity check completely specifies the angle between the projectile axis and the 
magnetic field. This discriminant can likewise be generated for any two magnetic 
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sensors with unequal, non-supplementary tilt angles. The choice of sensor 
orientations in the preceding discussion was made to simplify the algebra, but 
the number of sensors and sensor orientations in any application could be 
tailored to meet particular requirements. 

0 15 30 45 60 75 90 105120135150165180 
GM (deg) 

Figure 5. Roll Angle at Orthogonality for Two Sensor Orientations. 

0 15 30 45 60 75 90 105 120 135 150 165 180 
GM w%~ 

Figure 6. Ratio (a) Versus Magnetic Aspect Angle (cry) for Three Sensor 
Orientations (h). 



4. Installation and Calibration 

Because of tolerances in the manufacturing and installing of the sensors, the 
actual orientations of the sensors on a flight body will differ from their designed 
orientations. These differences in turn will result in different values of the ratio @ 
for given values of oM. Calibration of each MAGSONDE system after sensor 
installation will be accomplished with a magnetic field generator and a 2-degree- 
of-freedom rotary table. The flight body will be installed on a fixture that allows 
changing angular orientation with respect to the magnetic field in both roll ($,) 
and heading (oM). Roll positions at orthogonality versus oM will be tabulated, and 
the corresponding ratios will be generated. The tabulated data can be fitted via 
linear least squares to determine the installed circumferential location and tilt 
angle of the magnetometer sensitive axis, thus reducing the calibration to two 
parameters per sensor. 

5. Launch Window Simulation 

The necessity of each of the magnetic sensors being orthogonal to the field 
during a roll cycle defines the range of magnetic aspect angles within which a 
MAGSONDE with a particular sensor configuration is able to operate. This 
region of applicability is called the MAGSONDE window. As stated in Section 2, 
a sensor with a tilt angle h will be orthogonal to the field if and when the roll 
angle is a solution of 

& =sin-’ 
- cos (CT& cos (h) 

* sin ((3,) sin (h) 1 
The existence criterion for Qs of 

-cos(cF,)COS(h) < ] 
- sin (c,) sin(h) 

leads to the requirement that 90 - h I oh, 5 90 + 3L . 

The suitability of a MAGSONDE system for a particular flight depends of the 
range of possible magnetic headings ((3,s) during that flight. Given the direction 
of the earth’s magnetic field at the flight location and an estimate of the 
anticipated trajectory, possible sensor packages and lines of fire that result in 
good geometry can be determined. 

Although the earth’s magnetic field varies with both location and time, these 
variations are regular and known. Moreover, the variations over the length and 
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duration of a projectile trajectory are typically negligible, excluding local 
anomalies. Thus, given knowledge of the flight location, the magnetic field near 
the earth’s surface can be obtained from geodetic survey data, computer models, 
or direct measurement. 

Simulated trajectory data are then used to estimate the nominal anticipated 
magnetic heading angle history. In some cases, it will be true that for a portion of 
the trajectory, the body’s attitude with respect to the magnetic field is inside the 
MAGSONDE measurement capability sometimes and outside that capability at 
other times. For applications in which limited portions of a flight are of interest, 
MAGSONDE coverage at only those times need be guaranteed. 

6. Acquisition of Flight Data 

Raw sensor data can either be stored on board and recovered or be transmitted to 
a ground station. Two methods of data collections can be used for telemetry 
applications: analog data via FM/FM or digital data via pulse code modulation 
(KM). Analog applications include FM/FM telemetry via high frequency 
voltage-controlled oscillators. Digital applications would primarily use on-board 
PCM systems to digitize and serialize the data for common telemetry practices. 
Typical reduction techniques employing non-causal, digital filtering and curve 
fitting would be used to determine the occurrence of orthogonality (i.e., zero 
crossings of the signal). 

7. Data Processing 

Whatever acquisition and processing techniques are employed, the objective is to 
tabulate a temporal history of three data at each of the zero crossings during the 
flight: the sensor identification (1 or 2), the time of the crossing, and the polarity 
of the other sensor at that time. With these data, a standard methodology for 
extracting magnetic aspect angle and roll rate is presented. All available data will 
be collected and archived and can be reduced in the field environment to provide 
feedback during an experiment and enhance the flexibility of the study 
requirements. Advanced reduction techniques can be substituted when 
appropriate, including (but not limited to) compensation for rapid changes in 
magnetic aspect angle or roll rate. 
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7.1 Magnetic Aspect Angle Measurement 

In Sections 2 and 3, the value of the ratio 

combined with the polarity of S, when S,=O was shown to uniquely specify CY~. 
Flight data will not give sensor roll angles at zero crossings but times when these 
crossings occurred. If two constraints are present, the crossing times can also be 
used to directly compute oM. These constraints are 

The magnetic roll rate is constant for four consecutive zero crossings; and 

CY, is constant for these four crossings. 

With these two restrictions, the magnetic roll acceleration, roll rate, roll position, 
and ratio of four consecutive sensor occurrences in the sequence 
S,, SIA SzB S,B are given by 

(5) 

a = @szB -h.,, = (a0 +alh.20 ) -  (a, + a,tSzA )  = tSzn -  tSzA 

h4 -  %A a0 + a,h 
- a, +a,t, t ID IA SIB -h 

(6) 

Thus, CD computed from zero crossing times is the same as that computed from 
roll position calibration data at any constant 03,. 

In flight, these constraints are seldom true, but for simulated flights of several 
types of projectiles, the differences between CD computed from in-flight crossing 
times with the standard methodology and CD from calibration only resulted in 
errors in (3, estimates on the order of hundredths of degrees. A representative 
example is seen in Figure 7 where the o, history for a simulated trajectory of an 
M483Al artillery projectile at the transonic range at Aberdeen Proving Ground 
and the errors in the Ok estimates are given. In these simulations, noiseless 
sensors and 64-bit precision were assumed. 
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0 5 20 0 5 TA& (SC; 20 

a) oM history during simulated flight b) Error in oM estimates with MAGSONDE 

Figure 7. Errors in GM Estimates Attributable to Violation of Standard Reduction 
Assumptions in a Simulated Flight. 

7.2 Magnetic Roll Rate Measurement 

The standard reduction estimates magnetic roll rate by numerically 
ifferentiating the magnetic roll position histo 

4 
J 

. The calibrated roll positions 

h,,, &A, 9@s2,, 7+s,,, 4s,,2 1$S2A2 4s2o2 AIB, 7-- for each of the zero crossing 
tunes and magnetic aspect angles are assigned. sing the sensor identification in 
the flight data, one can determine a temporal history of the sensor’s roll 
positions. This crossing times history is used to estimate the roll rate. When oM is 
near 90” and/or when the yaw and pitch rates are relatively low compared to the 
roll rate, magnetic roll rate and the body’s spin rate are equivalent. 

8. Conclusions 

A methodology for deriving the heading and the roll rate of a spinning projectile 
relative to a magnetic field has been formulated. Devices employing this 
methodology, called “MAGSONDEs,” are currently in engineering development. 
It is planned to include MAGSONDEs in flight study programs in the near 
future. MAGSONDEs will provide an all-weather, day/night angular 
measurement capability for spinning projectiles that does not currently exist. 
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